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Analysis of atom-interferometer clocks
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We analyze the nature and performance of clocks formed by stabilizing an oscillator to the phase difference
between two paths of an atom interferometer. The phase evolution has been modeled as being driven by the
proper-time difference between the two paths, although it has an ambiguous origin in the nonrelativistic limit
and it requires a full quantum-field-theory treatment in the general case. We present conditions for identifying
deviations from the nonrelativistic limit as a way of testing the proper-time-driven phase evolution model.
We show that the system performance belies the premise that an atom-interferometer clock is referenced to
a divided-down Compton oscillation, and we suggest that this implies there is no physical oscillation at the
Compton frequency.
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I. INTRODUCTION

In a recent paper, Lan et al. [1] claim to have created
a Compton clock, an oscillator with frequency stabilized
to a particle’s mass via a purported intrinsic oscillation at
the Compton frequency, ω0 = mc2/�. The ultimate limits
of such a clock would far surpass any current or proposed
traditional atomic clock; the experiment used 133Cs, for which
ω0/2π = 3 × 1025 Hz, about 10 orders of magnitude higher
than the frequency of optical atomic clocks, the current state
of the art.

Whether ω0 corresponds to a physical oscillation is a matter
of debate. De Broglie first associated a massive particle with
an oscillation at frequency ω0 in developing his wave theory of
matter, and it was integral to his pilot-wave theory of quantum
mechanics [2]. Despite the success of the theory of matter
waves, the idea of an internal clock for a massive particle has
been mostly ignored [3]. But in recent years it has appeared
in the literature with claims that the redshift of the Compton
oscillation frequency is measured in an atomic gravimeter [4],
as well as with a search for evidence of an internal oscillation
in the electron in channeling experiments [5]. In a recent book,
Penrose claims that a stable, massive particle behaves as a very
precise quantum clock, “oscillating” at ω0/(2π ) [6].

Yet the overall phase of a quantum state, to which the
Compton clock would fundamentally correspond, is widely
accepted to be unobservable, while it is the relative phase
between two states that corresponds to a physical oscillation.
This is manifest in the squaring of the state vector character-
izing the system to generate the probability distribution for
measurement outcome, which at the same time does away
with the overall phase. In recent literature it has been claimed
that ω0 does not correspond to a physical oscillation, with
the points being made that it is not Doppler shifted to an
observer in motion [7] and that an atom interferometer is a
single accelerometer and not two clocks [8].

What seems to be accepted is that, in nonrelativistic
quantum mechanics, the Compton frequency is the rate of
accumulation of the quantum phase with respect to proper time
τ̃ for a system. In an atom-interferometer clock, the difference
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of quantum phases of two motional states of an atom is used as
a frequency reference [1]. Here we analyze the source of phase
evolution and frequency stability in this system, including the
role of the Compton frequency and purported oscillation.

II. PHASE EVOLUTION IN AN ATOM INTERFEROMETER

Over the past two decades atom interferometers have
developed into high-precision tools for inertial measurements
[9,10], tests of the foundations of general relativity [11],
and determination of the ratio h/m of Planck’s constant to
atomic mass [12,13]. Laser-atom interactions used for the
beam-splitting process produce superpositions of atomic states
with different velocities that travel along two physically dis-
placed paths and are subsequently recombined. The resulting
interference reveals the difference in phase accumulated along
each path.

The free-propagation phase factor for an atom with velocity
v can be written as

eiφ = eiω0 τ̃ = eiω0t/γ , (1)

where τ̃ is the proper time for the atom and γ = 1/
√

1 − v2/c2

is the Lorentz factor. This can be seen from the path-integral
formulation of quantum mechanics [1] or by substituting rela-
tivistic momentum and energy expressions into the phase fac-
tor for a massive-particle wave packet [7]. The assumption in
each case is a well-defined (classical) trajectory characterizing
the particle’s motion; a full quantum-field-theoretic treatment
is required when the system is sensitive to relativistic effects
as a result of sufficiently high velocity and/or precision. In
this semiclassical limit, the free-propagation phase difference
between the two paths in the interferometer evolves at a rate
given by

ω = ω0(γ −1 − 1) (2)

for the case where the second path corresponds to zero velocity
in the laboratory frame. This can be treated as the frequency
of a two-state system formed by the motional states in the
interferometer.

When v � c, the Lorentz factor can be expanded as γ −1 ≈
1 − (v2/2c2) − (v4/8c4) + · · · . To lowest order in v/c, the
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above phase factor reduces to

eiφ = eiω0t/γ ≈ eiω0t e−imv2t/2�. (3)

In this case the Compton frequency comes in only through
an overall phase common to each path, which cancels when
phase differences are considered. For the remaining factor, the
phase evolves at a rate determined by the atom’s kinetic energy,
and the rate at which the relative phase in the interferometer
evolves is just mv2/(2�). There is no longer a factor of ω0 in
the phase evolution of the interferometer, and no relativistic
proper time is involved.

Of course, this phase evolution rate can be written as
ω0v

2/(2c2), which has been called the time-dilated Compton
frequency [1]. But the same term can also be written as ωdB/2,
where ωdB is the (angular) de Broglie wave frequency, the
frequency associated with the physical oscillation of a matter
wave with momentum mv. In the low-velocity limit, then,
the phase evolution cannot unambiguously be attributed to
the proper-time difference since the rate is indistinguishable
from that driven by kinetic energy. These two origins of phase
evolution give differing rates for arbitrary velocities, where
formally a full quantum-field-theoretic formalism is required,
with Eq. (2) quantifying the rate for the proper-time-driven
model and the expression for a kinetic-energy-driven phase
evolution differing from this by the sign of the exponent of γ

[14].
If an interferometer were sensitive enough to resolve the

next term in the expansion of γ −1, the form of the phase
evolution rate could be empirically tested. This term, (v4/8c4),
gives a contribution to the rate of phase evolution of

δω = ω0(v4/8c4), (4)

or as a fractional frequency,

δω/ω = v4/[8c4(γ −1 − 1)], (5)

which reduces to v2/4c2 to lowest order in v/c. Resolving this
term in an interferometer would be evidence of quantum phase
evolution due to relativistic proper time.

III. COMPARISON TO ATOMIC CLOCKS

In order to assess the precision with which an atom
interferometer can measure the evolution of the relative phase
between the two paths, we develop an analogy to conventional
atomic clocks.

Conventional passive atomic clocks operate by stabilizing
the frequency of a local oscillator to an atomic resonance.
Atomic states with well-defined internal energies make up a
two-state system that serves as the frequency reference for the
local oscillator, and the achievable signal-to-noise ratio and
quality factor Q of the resonance dictate clock performance.
The signal-to-noise ratio is determined by the statistics of
measuring the quantum states of the number of atoms in
the system Na , and Q = f/�f , the ratio of frequency to
linewidth, which is often measurement-time limited. In the
standard quantum limit (SQL), the precision of the frequency
reference improves with averaging time τ as

σ (τ )−1 = Q
√

Na

√
τ , (6)

FIG. 1. (Color online) Demonstration of conditions for an atom
interferometer to be sensitive to relativistic effects. For the parameters
discussed in the text, the plot shows the fractional frequency δω/ω,
representing the first-order correction to the low-velocity limit for the
phase evolution rate according to the proper-time model (blue curve,
right axis), and the averaging time required to resolve this frequency
(red curve, left axis) as a function of β = v/c. For the system in
Ref. [1], β = 100 × 10−12.

where σ is the Allan deviation used for characterizing clocks
and oscillators [15]. This gives the averaging time τf required
for a clock to resolve a fractional frequency δf/f as

τf = [Q
√

Na(δf/f )]−2. (7)

In an atom interferometer, the velocity states make up
the two-state system serving as the frequency reference. The
quality factor is Q = ω0(γ −1 − 1)/�ω, where the linewidth is
determined by the interaction (Ramsey) time T , �ω/(2π ) ∼
1/2T . As an example, we consider a signal-to-noise ratio√

Na of 1000, corresponding to a sample size of the order
of 106 atoms, and a linewidth �ω/(2π ) = 1.5 Hz resulting
from a 0.32-s measurement time. For these values, we plot in
Fig. 1 the time τω required to resolve the frequency difference
δω/ω, from Eq. (5), as a function of β = v/c, assuming
the SQL for all averaging times. From the plot we see that
at β ∼ 870 × 10−12 (v = 0.26 m/s), phase evolution due to
relativistic proper time can be resolved with about 1 hour
of averaging. For cesium, this velocity corresponds to about
70 photon recoils [16], which can be reached with state-of-
the-art beam-splitting techniques, so testing phase evolution
due to relativistic proper time beyond the nonrelativistic limit
should be possible with current technology [17].

The expected SQL for the system in Ref. [1] can be
determined from the experimental parameters. The velocity
difference between atoms in the two paths of the interferometer
is due to the recoil from 10 photons, giving v ≈ 0.035 m/s
and ω/(2π ) ≈ 200 kHz. The 320-ms measurement time and
106 atoms contributing to the interferometer signal correspond
to �ω/(2π ) ≈ 1.5 Hz and a signal-to-noise ratio of 1000.
So the expected performance for this system is characterized
by an Allan deviation versus averaging time of σ (τ ) =
2.5 × 10−9/

√
τ . This is consistent with the standard-quantum-

limited performance referred to in [1], and it corresponds to
an averaging time of more than 7 × 1014 s, or 2 × 107 years,
to test proper-time-driven phase evolution, as can be seen from
Fig. 1. The performance actually demonstrated was two orders
of magnitude worse than the SQL, making the averaging
time required 7 × 1018 s, or 2 × 1011 years (more than
10 times the age of the universe). So that interferometer was
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not sensitive to relativistic effects, and the phase evolution
was indistinguishable from that driven by the difference in
kinetic energy due to absorption and emission of photons in
the beam-splitting process.

We can also assess the potential performance of in-
terferometer clocks in comparison to conventional atomic
clocks. In most state-of-the-art atomic clocks the linewidth
is measurement time limited, so comparing Q’s comes down
to comparing frequencies. For microwave (fountain) clocks,
the number of atoms will be comparable to an interferometer
system, so the difference in quantum-limited performance is
due to only the two frequencies. For an interferometer clock
to achieve stability comparable to a microwave clock with
angular frequency ωμ, it is required that ω0(γ −1 − 1) ∼ ωμ.
For cesium, ω0/(2π ) = 3 × 1025 Hz and ωμ/(2π ) = 9.2 ×
109 Hz; it is necessary for (γ −1 − 1) ≈ v2/(2c2) to be on the
order of 3 × 10−16, giving v/c ∼ 2.5 × 10−8 and v ∼ 7.4 m/s.
Beam splitting for atom interferometers can produce relative
velocities of roughly 100 photon-recoil velocities, or about
0.3 m/s for cesium, and it may be possible to extend this
another order of magnitude [17]. This potential improvement
could make the quantum-limited performance similar to
microwave clocks. In order to achieve atom-interferometer
performance comparable to optical clocks, another several or-
ders of magnitude in frequency would be required. Continuing
to use the nonrelativistic approximation, it would be necessary
to generate velocities v ∼ 2 × 103 m/s to achieve a frequency
of 5 × 1014 Hz. This is well beyond current technology; in ad-
dition, for a reasonably sized interaction region, such high ve-
locities limit the measurement time and reduce the effective Q.

IV. ATOM-INTERFEROMETER CLOCK
AND COMPTON OSCILLATION

In Ref. [1], the velocity states in an atom interferometer
were used as a two-state frequency reference for a clock. If
the resulting clock were referenced to the purported Compton
oscillation, it would suggest the promise of a reference with a
frequency of 1025 Hz and correspondingly high Q.

The total phase determining the interferometer signal is
the combination of the free propagation phase, discussed
above, and the “laser-atom” phase from the beam-splitting
interactions. The interferometer in Ref. [1] was turned into
a clock by feeding back to the laser frequencies used in
the experiment to adjust the laser-atom interaction and keep
the total phase zero. Adjusting the laser frequencies would
normally modify the reference frequency via the effect on the
atom’s velocity, which is entirely due to photon recoil. An
arrangement was used to decouple the atom’s velocity from
the raw laser frequency ωL by imposing ωL = Nωm, where
ωm = ω+ − ω− is the difference in frequencies of the beams
used to impart velocity to the atoms and N is not necessarily
an integer. The atomic velocity then depends not on ωL but
on N , which is determined by a set of frequency multipliers.
The physical output of the clock comes from adjusting an
oscillator that determines ωm (and ωL) to keep the total phase
of the interferometer constant (equal to zero). According to
Ref. [1], when φtotal = 0, ωm = ω0/(2nN2).

In the previous section we analyzed the performance of an
atom-interferometer clock based on the SQL for the two-state

system comprised of different motional states separated in
phase evolution rate by ω. The SQL for a true Compton clock
would be governed by the frequency of the purported Compton
oscillation, 1020 times higher. This same performance applies
even to a system referenced to a divided-down Compton
oscillation, as claimed for the interferometer in Ref. [1].
This dividing down is reminiscent of optical clocks, where
the optical frequency is divided down to an electronically
countable microwave frequency. The performance of the
system is still determined by the optical frequency; the high sta-
bility associated with the optical signal is transferred without
degradation to the lower-frequency oscillation. This is simply a
consequence of the propagation of uncertainties, which shows
that “dividing down” the frequency of an oscillator does not
change the relative uncertainty, i.e., stability, of the signal [18].

If the frequency of the interferometer clock were divided
down from the frequency of a physical oscillation at ω0 in the
same way, the stability of the clock should be the same as that
oscillation [19],

δω/ω = δω0/ω0. (8)

The observation that ω is derived from the difference of two
frequencies, the phase evolution rates of the arms of the
interferometer, each of which could be considered a divided-
down Compton frequency, does not change this. Because the
two rates are both fractions of the same higher frequency, the
correlations introduce a nonzero covariance, with uncertainty
propagation again showing the final stability to be the same
as that of the oscillation at ω0 [20]. On the other hand, if the
covariance between the two frequencies is zero, indicating no
correlation, the derived stability agrees with that calculated in
the previous section.

The only qualification to this argument is that the factor
in ω multiplying (dividing down) the Compton frequency,
η = γ −1 − 1, has an associated uncertainty that needs to be
included in the error propagation and that would limit the
clock performance in this model. This technical-noise limit
should be independent of any standard quantum limit, so the
predictions of clock performance from a Compton-oscillation
model can still be differentiated from a clock governed
by the properties of the two-velocity-state system, and the
empirical stability provides a means of testing the physical
reality of the Compton oscillation. We can try to assess the
technical-noise limit in Ref. [1] from experimental values
provided. In the low-velocity limit, uncertainty propagation
from the Compton oscillation to the clock output includes
the term �η/η = 2�v/v = 4�N/N . An uncertainty on N is
not stated, but from the number of significant digits it can be
inferred that �N/N ∼ 10−12 [21]. The Compton oscillation
model therefore predicts a technical-noise-limited stability no
worse than 10−12, significantly better than that predicted by
the two-velocity-state SQL and better than that demonstrated.

So the system in [1], despite being designed to operate
as a divided-down Compton clock, empirically operates as a
clock with no connection to the Q of the purported Compton
oscillation. The “Compton oscillations” for an atom in the two
paths of the interferometer behave as if they are completely
uncorrelated, even though they are affiliated with the same
particle. This evidence strongly suggests that the frequency
ω0 does not correspond to a physical oscillation. In the
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absence of a physical oscillation, what remains is the quantum
phase, which is just a product of the system’s proper time
and the parameter ω0. The phase still accumulates at a high
rate (compared to frequencies that we are accustomed to for
atomic clocks) due to the large value of ω0, but this does
not contribute to making a clock until a relative phase is
generated. In that case, for common velocities, the rest-mass
contribution mostly cancels, and the resulting frequency is not
exceptional [22].

Finally, we point out that, if these conclusions stand, there
may be an impact on past analysis of an atom-interferometric
measurement of the gravitational redshift and a corresponding
test of local position invariance (LPI). In Ref. [4], a mea-
surement of g was reinterpreted as a measurement of the
gravitational redshift of the Compton frequency and a test
of the dependence of the redshift on gravitational potential U .
If the notion of a physical Compton oscillation is abandoned,
the implications for these results is unclear. The nature of the
measurement changes from a measurement of the redshift (of
the frequency of a physical oscillation) to a measurement of
time dilation (due to the geometry of space-time). In particular,
it is not obvious that the anomalous redshift parameter β used

in [4] would enter in the same way. This may be a topic for
future consideration.

V. CONCLUSIONS

We have analyzed the nature and performance of clocks
based on atom interferometers. We have presented the condi-
tions required to test proper-time-driven phase evolution for
general conditions beyond the nonrelativistic limit. We have
shown that atom-interferometer clocks are not competitive
with state-of-the-art atomic clocks; in particular, performance
comparable to optical clocks seems to be out of reach. This
modest performance is despite claims that the system is a
Compton clock, referenced to a purported oscillation at ω0,
which suggests possible performance 10 orders of magnitude
better than optical clocks. This discrepancy, illustrated using
the propagation of uncertainties from the presumed Compton
oscillation to the clock output, strongly suggests that there is
no physical oscillation at ω0.
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Biraben, Phys. Rev. Lett. 106, 080801 (2011).

[14] Considering the difference in these two phase evolution rates
was instrumental in the original development of de Broglie’s
matter-wave theory.

[15] D. A. Howe, D. W. Allan, and J. A. Barnes, Proceedings of
the 35th Annual Symposium on Frequency Control (Electronic
Industries Association, Washington, DC, 1981), pp. A1–A44.

[16] A “photon recoil” is the recoil velocity of an atom from
absorbing or emitting a single photon.

[17] S. W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich,
Phys. Rev. Lett. 107, 130403 (2011).

[18] If ωμ is the lower microwave frequency signal, ωopt is the optical
frequency that is stabilized, and M is a large integer (usually on
the order of 105) relating the two, ωμ = ωopt/M , then δωμ =
δωopt/M , and δωμ/ωμ = δωopt/(Mωμ) = δωopt/ωopt.

[19] δω corresponds to the uncertainty associated with the clock
output, as opposed to the linewidth, �ω.

[20] From Eq. (2) we have ω = γ −1ω0 − ω0. Uncertainty propaga-
tion for the absolute uncertainties when subtracting two values
gives (δω)2 = (γ −1δω0)2 + (δω0)2 − 2γ −1δ0,0, where δ0,0 is the
covariance of ω0 with itself, i.e., (δω0)2. The expression for
the absolute uncertainty reduces to δω = δω0(γ −1 − 1), and the
relative uncertainty is then δω/ω = δω0(γ −1 − 1)/[ω0(γ −1 −
1)] = δω0/ω0. Propagation of uncertainties shows that not only
does dividing down the frequency of an oscillator not affect the
stability but differencing two frequencies divided down from the
same oscillator does not affect the stability; in each case, the final
signal should exhibit the same stability as the high-frequency
oscillation.

[21] This is using the lower precision included in the Supplemental
Material; the higher precision quoted in [1] gives a more
stringent �N/N ∼ 10−14.

[22] At first glance, it seems that the system could exhibit a
performance consistent with the notion of a Compton clock
for large enough velocities to make ω → ω0, which requires
v → c. But, in addition to being an unrealistic limit, the
nonrelativistic formalism used to derive the phase evolution
in the interferometer is not valid for relativistic velocities
and must be replaced with a full quantum-field-theoretic
treatment in that case [23], as we have emphasized all
along.

[23] R. Feynman and A. Hibbs, Quantum Mechanics and Path
Integrals (McGraw-Hill, New York, 1965).

014101-4


